monitor quality (10)

24 Oct 2017

2017 California Nursery Conference: Conclusion

Brett Cregg (Michigan State University), Paul Fisher (University of Florida), Sarah White (Clemson University), Charlie Hall (Texas A&M), and Bruno Pitton, Darren Haver, Grant Johnson, Loren Oki (University of California)

This conference, held on July 27, 2017 in Irvine, CA, focused on Water Management in Nursery and Greenhouse Production. The Clean WateRteam presented their research studies. The conclusion of the conference dealt with recycling water: economics, monitoring quality, managemet of nutrients and agrichemicals, and pathogens and biofilm. The topics covered are:

3-1ImpactsRecycledWateronPlantPhysiologyandgrowth (1175 KB)
3-2BiofilmManagement (3947 KB)
3-3BiologicalTreatmentofRunoff (4394 KB)
3-4SlowSandFilters (2204 KB)
3-5WaterRecyclingEconomics (1245 KB)

9 May 2017

How Much Does It Cost to Sanitize Your Water

Raudales, R. (University of Connecticut), Fisher, P. (University of Florida), Hall, C.(Texas A&M University)

Sanitation of pond water and recirculating water is essential to prevent waterborne pathogens.  There are many sanitizing options such as chlorine dioxide, copper ionization, ozone, and sodium hypochlorite, to name a few.  The cost of the equipment (capital cost) and sanitizing treatment (operational cost) is presented in this article.

The cost for sanitation in irrigation water is the second article in a three-part series of water management in GPN magazine. 

See the article in the link below.

http://www.gpnmag.com/article/how-much-does-it-cost-to-sanitize-your-water/

28 Sep 2016

Remediating Paclobutrazol From Irrigation Water Using Activated Carbon

Grant, G.A., Fisher, P., Barrett, J.E., Wilson, C.P. (University of Florida)

Recirculating irrigation water can sometimes have residual agrichemicals present, such as paclobutrazol.  Paclobutrazol is an active ingredient used in plant growth regulators to control plant height.  The objective of this project was to use granular activated carbon filtration (GAC) to remove paclobutrazol using different contact times.  A 0.05 mg·L-1 (50ppb) paclobutrazol solution was passed through a small-scale, 0.50 to 4.75 mm particle size (8x30 mesh) coconut coir GAC system.  A bioassay of broccoli seeds and begonia seedlings were used to show the effect of before and post GAC filtered water.  Paclobutrazol concentration decreased by 90% or 99% with a contact time of 12 seconds or 59 seconds GAC, respectively. Overall, this experiment showed that granular activated carbon has the potential to remediate paclobutrazol from irrigation water to below biologically-active concentrations.

https://youtu.be/ZE96DQa4nT8

ASHS Abstract 2016 Grant (270 KB)

Key
pdfYou will need Adobe's Reader to view this file. Download the reader for free from Adobe's web site

  •   1  
  •   2  
  •   3  

Description of research activities

A national team of scientists is working to encourage use of alternative water resources by the nation’s billion-dollar nursery and floriculture industry has been awarded funds for the first year of an $8.7 million, five year US Department of Agriculture – National Institute of Food and Agriculture –Specialty Crop Research Initiative competitive grant.

The team will develop and apply systems-based solutions to assist grower decision making by providing science-based information to increase use of recycled water.  This award from the NIFA’s Specialty Crop Research Initiative is managed by Project Director Sarah White of Clemson University.  She leads a group of 21 scientists from nine U.S. institutions.

Entitled “Clean WateR3 - Reduce, Remediate, Recycle – Enhancing Alternative Water Resources Availability and Use to Increase Profitability in Specialty Crops”, the Clean WateR3 team will assist the grower decision-making process by providing science-based information on nutrient, pathogen, and pesticide fate in recycled water both before and after treatment, average cost and return-on investment of technologies examined, and model-derived, site specific recommendations for water management.  The trans-disciplinary Clean WateR3 team will develop these systems-based solutions by integrating sociological, economic, modeling, and biological data into a user-friendly decision-support system intended to inform and direct our stakeholders’ water management decision-making process.

The Clean WateR3 grant team is working with a stakeholder group of greenhouse and nursery growers throughout the United States.

For example, at the University of Florida graduate student George Grant is collecting data on removal of paclobutrazol, a highly persistent plant growth regulator chemical, from recirculated water using granular activated carbon (GAC) filters. This is being done in both research greenhouses and in a commercial site. The GAC filters can remove more than 90% of chemical residues, and are proving to be a cost-effective treatment method.

 

×